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ON CONTINUOUS DISTRIBUTIONS OF DISLOCATIONS IN NONLOCAL ELASTICITY

A. Cemal Eringen
Princeton University
Princeton, NJ 08544

ABSTRACT

A linear, nonlocal continuum theory of dislocations is developed,
The field equations are given for the dislocation density and the stress

fields due to continuous distribution of dislocations. Green's functions

are obtained for two and three-dimensional media and an integral formula

is given for line distribution of dislocations.generalizing Peach-Koehler

formula of the classical (local) theory. Unlike the classical theory, no

stress singularities occur so that self-stress and energies of disloca-

tion loops can be calculated involving no divergences. Exact solutions

given for the line and circular distributions of dislocations verify these

3 expectations.
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1. INTRODUCTION

In classical (local) theory, the displacement and stress fields
due to a continuous distribution of dislocations can be calculated by
means of various surface and volume integrals once the Green's functions
for the dislocation density is known. To obtain the Greens function one
solves partial differential equations {>r the stress functions. For
example, the stress due to a line distribution of dislocation is given
by the Peach-Koehler formula. One of the basic difficulties of this
theory is tha*t the self-stress and energies of dislocation loops possess
mathematical singularities so that calculations will have to be cut-off
near the lines of dislocation or the core region.

In severa;-previous papers (cf. 1-4), I have shown that the
solutions for the single dislocation involve no stress or energy singu-
larities at the core regions. Moreover, calculated theoretical strengths
of solids and dispersion curves for plane waves agree quite well with
those known from the atomic lattice dynamics and/or experiments. There-
fore, it is expected that the nonlocal theory will eliminate the classical
singularities for the self stress and energies of dislocation loops. The
raison d';tre of the present paper stems from the need to develop a
theory of continuous distribution of dislocations based on the nonlocal
elasticity, that can hopefully predict the physical phenomena in the
microscopic and atomic scales where classical theory fails to apply.

In Section 2, I summarize the basic equations of the nonlocal

theory of linear isotropic elastic solids. In Section 3, 1 develop




¥
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the field equations for the continuous distribution of dislocations.
Green tensors for the Beltrami and Airy stress functions for solids of
infinite extends are obtained in Section 4, The stress fields are given
by a volume integral generalizing celebrated Peach-Koehler formula of the
classical theory. In Section 5, I derive explicit expressions of the
stress fields for the uniform distributions of screw dislocations along
a straight line segment and along a circular loop. The exact formulas
obtained for these cases contain no singularities, justifying our expec-
tation. Section 6 contains calculations of stress fields and a discussion
of the reduction of yield stress with the dislocation pile-up.

The simplicity and the aesthetics of these results, I believe,
justifiably indicate the power and the potential of the nonlocal theorv in
the treatment of the physical phenomena with characteristic lengths in the

microscopic and atomic scales.

2. BASIC EQUATIONS
The linear theory of nonlocal elasticity is based on Cauchy's

equations of motion
(2.1) teg,k P, - ) = 0

and the integral constitutive equations
= LI ] t
(2.2) t o (%:1) j Crom (X' -X) e (x) dv(x')
v

where t ,,p, f,, u, and e are respectively, the stress
k2 ) L

9

tensor, the mass density, the body force density, the displacement vector

and the linear strain tensor defined by




st

(2.3) &y = %'(“k,z *up )

In (2.2), y Lmn is a function of the vector 5'-5 and the
integral is over the volume of the entire body. Consequently, the stress
at a point x depends on the strain at all points x' of the body.

Throughout this paper, we employ rectangular coordinates Xy »
k=1,2,3, and use the usual summation convention on repeated indices. Also
a superposed dot indicates the time rate and an index followed by a comma
partial differentiation with respect to Xy » €e8e

du du
Y% T 3t ¢ Yk, °

A
£

The kernel Cxamn POSSesses certain symmetry regulations and it depends

on a length scale. For isotropic solids (2,2) takes the simple form

(2.4) tp(xt) = Ju(lg'-zl) 0, (") dv(x")
v

where ng is the classical (local) stress tensor given by the Hooke's law

(2.5) o = Ae_ 6, . +2ue

k2 T k& k&

and o 1is a function of the distance |[x'-x| . It also depends on a
length scale € that may be taken to be proportional to an internal charac-

teristic length a

(2.6) E = e;a

where ¢, is a non-dimensional material property which may be determined

3-5

by one experiment or comparison with calculations based on lattice dynamics

The internal characteristic length a may be taken as the lattice parameter




for single crystals, granular distance for amorphous materials, and the

average distance for fiber composites. As €-+ 0, tkl > okl

reduces to Hooke's law tkﬁ = okl . Thus, a(]}'-x]) is a Dirac delta

and (2.4)

sequence,
. 3,5 . :
In several previous papers » 1 have discussed the properties of
a(]x'-x|)  and gave representations which lead to excellent agreement

3,6

with known atomic calculations on dispersions of waves in the entire

Brillouin zone and on theoretical strengths of solids.4 For example, for

the two-dimensional case, an appropriate kernel is
2,-1 —_—
(2.7) a{xl,e) = (2me™)™" Ky (Vx"x/e)
which satisfies the equation
2,2

(2.8) (1-€V)a = &(|x'-x])
vanishing at infinity., In fact, for the infinite solid, it can be shown
that o 1s the Green's function satisfying (2.8) in three-dimensions also.

Using (2.8) in (2.4), we obtain
2.9) 292
( . (1 - € )th i g

kg

By means of (2.1) and (2.9), we then find that

[
o

5 9
(2'10) (A’u)uk,kl + U vl,kk + (1 - € v )(pfz - ouz)




These are the partial differential equations for u replacing Navier's
equations of classical elasticity. For the static case and vanishing body

forces, this reduces classical Navier's equation
(2.11) Qi) we g * U g = 0

However, note that the stress field is determined by solving (2.9)

under appropriate boundary conditions.

3, CONTINUOUS DISTRIBUTION OF DISLOCATIONS
Continuous distribution of dislocations is envisaged as follows:

A small neighborhood n(x) of x 1in a distorted body of volume V, may

be relaxed to a small neighborhood N(X) of the image of X of x, in
an undistorted (or a natural) configuration V, by releasing constraints
exerted to n(x) by the rest of the body. A line element dx at x€en(x)

can be expressed in terms of its image dXe&N(X) by

(3.1) dx = é dx

where A(X) 1is called the elastic distortion. It is assumed that A(X)

is continuously differentiable and possesses uniqie inverse so that

(3.2) dX = A dx




Consider a smooth surface S in V bounded by a closed curve ¢ . The

true Burger's vector b of the dislocations piercing through § 1is de-

fined by

(3.3) B = dX = A dx = ands

where n is the unit normal to S , the positive sense of ( being

counter-clockwise when sighting along n. Here a 1is called the true

dislocation density

-1 -1
(3.4) a = curl A or a,

For small distortions, we can write

so that

3.6 . =
( ) aJk Ekmn O‘jm,n

From this, it follows that

(3.7) ajk,k = 0
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The linear strain tensor €10 and rotation tensor T, are given by

(3.8) ey - % (g * ogy) > L ';' (g = % 1)

The strain incompatibility is expressed by

(3.9) €ijk “em %in,jm = ke

where Mo is called the incompatibility tensor and is given by
1

(3.10) kg * f'(ekmnanl,m * Ezmnank,m)

All these results are well-known in classical theory (cf. Ref., [7]).
In nonlocal elasticity, the strain tensor can be solved by using

(2.9) and (".5)

1 252
(3.11) e = o (1 -V )(tkl -

kL t oSk

~_
1+v rr k&

where v = A/2(A+u) is the Poisson's ratio. Substituting (3.11) into

(3.9), we obtain

202, 2 1 2 _
(3.12) (- V) [V, + 373'(trr,k2 - VSl o= 2ungg

These equations must be solved under the conditions of equilibrium

(3.13) = 0

iy, k
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Following Kroner's approachs, modifying the Beltrami solution of (3.13),

we take

.2 1 2
(3.14) b/ = Vgt T Xorke m Y Xpr Ske)

where the symmetric stress function XK1 is subject to

(3.15) Xkg,0 = 0.

Substituting (3.14) into (3.12), we obtain

(3.16) (- Ty, = o0,

Thus, given the dislocation density function 3 s through (3.10), we
calculate nkR . The solution of (3.16) gives Xy and (3.14) the

stress field.

Equation (3.16) is singularly perturbed and as expected in the

limit €+0, (3.16) reduces to the classical equation for Xkg
To obtain the solution of (3.16), we must find the Green's Tensor

Gkianf’E) which satisfies

. 2.2, .4 .
(3.17) (1 - €¥) 776, = 6(x-8) 6,6 .

The solution of (3.16) is then given by

(3.18) Xy = }szmn(f’g) N (§)dv(E)
v

subject to supplementary conditions (3.15).
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4, GREEN'S TENSORS AND STRESS FIELDS

Here we determine Green's tensors for two and three-dimensional

bodies of infinite extends.

(1) Three-Dimensional Infinite Space

The operator V2 is invariant under rotations of coordinates. For
the infinite space, we look for a solution of {3.17) which depends on

|x-¢| only, i.e.,

(4.1) a - ezvz) v = §(x-E)

. 2.2 4 .
Since the operators 1-e"V" and V  are commutative, we set

(1 -e%%) 6 H,

(4.2)

v

§(ix-gD)

For the infinite space, H 1is given by

(4.3) H o= - |x-£[/8n

In spherical coordinates using

2 1,24
ve o= 2 r" 3

we obtain for G:
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EZGO |x-£
(4.4) GUx-ED) = goyeegy eXP(-Ix-El/e) - 57—, €40

| -]

(4.5) G(If-gl) = - =g e=0

Here G, is an arbitrary constant which may be chosen G0 =1 to render

t regular at x=§ . The solution of (3.16) for the infinite solid

kk

is given by

[
(4.6) Xeq = l G(ix-ED) m (E) dv(E)
v

which satisfies the conditions (3.15) on account of (3.7) and (3.10). If

we substitute from (3.10), this gives

] ! [ a8 5 av(e
(4.7) Xe (X = 7 &i5k J Fate axg s
v
1 3G ,
. f'eijl I ajk(g) 3;; dv(g)
v

where we used the Green-Gauss theorem and set a surface term at infinity
to zero.

From (4.7), one can obtain various special cases involving surface
and line distributions of dislocations, For example, for a line distribu-

tion of dislocation along a closed curve C , we obtain

;;;1;::zs;;a.----n----l--l---iiiiiiIIIIIIIIIIIIIIiiIIlllIIiIllllllllllllllllllllllllllllll'




1 6oy L1 36
(4.8) e T 7 %a3% 9 eg Yt 7555 9 ox;
c c

where bj is the Burger's vector per unit length of ( and dzi is
the element of the arc.
Upon substituting (4.8) into (3.14), we obtain the stress field due

to a line distribution of dislocations

Y 2
(4.9) tkl/zu = 7€ ..b. } [v G,i(drkdl2 + 6r2d2k)

2 2
* 1o Gk - V6 5 Sg)dk)

This result is identical to the Peach and Koehler7 formula with modifi-
cation that here G is the nonlocal Green's function (4.4) with €#0.
As we shall see, the most interesting new feature of (4.9) is that, with
G given by (4.4), at a point on the dislocation line ( , the stress is
finite so that the self-stress and energies of dislocation loops can be

calculated, free of infinities.

(ii) Two-Dimensional Infinite Plane

In the case of the plane strain, introducing the Airy's stress

function ¢(x1,x2) by

(4.10) t, =0 ty, = ¢

11




we obtain an equation replacing (3.16)

(4.11) (1 -ev%) vt = 2un
where
(4.12) N = Mgz =831 33,2
333 % %21,2 7 %221 313 %11,2 7 %12,1

depend on X and Xy only.
Green's function in this case, can be found similar to decomposition

. (4.2) with V given by

L)
-

d

1d

Ve rw O F

Hence,
G, (x-£)* (x-E)

(4.13) G([x-£]) = == Ko([x-£[/€) - P en(|x-£f/e), € #0

TE
: (x-£)*(x-E)
(4.14)  G(|x-g]) = - —F——— n(x-g]), €=0

where Ko(z) is the modified Bessel's function. Again, we take G0 =]

-~

to render tek regular at x= §.
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Airy's stress function is obtained to be

(4.15) 0G0 = 2w ) [6) ay5(8) - G5 a15(0)] ds

S
where we used the Green-Gauss theorem and set a line integral to zero at
infinity. For a line distribution of dislocations in the Xg= 0- plane,

we obtain
r
(4.16) o(x) = - 2u J (G, by(E) dg; + G 5 By(8) dg,]

The stress field follows from (4.10)

f
(4.17)  t)y = - 2 J (G 122 Py &) + 6 555 by dE)),
c
thp - ] (G 131 Py 48y * G 5y 0y 9620
t =20 S ... b, dE, + G, b dE)
12 - “H ,112 %2 9% ,212 01 952

(iii) Anti-Plane Strain

In the case of anti-plane strain, equations of equilibrium are

satisfied if

(4.18)
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and we obtain

(4.19) a - €29%y v% = wa,,
")
where
3 (4.20 833 % %31,2 " %32,

Green's function for this case, is obtained to be

(4.21) G([x-¢[) - 3 [n([x-g]/e) + Ky(x-El/)], & #O

"

(4.22) G(|x-&

o

) = - an(ix-E)) e=0

The stress field is given by

(4.23) ty; = M J G, b(§) dg di,
S
thy = -1 i G | b(§) dE; dE,

For a line distribution of dislocations on the plane xs-O , we have

'
(4.24) t;; = M J G,2 b(g) di , tyy = - I

C C
In plane polar coordinates

G 1 b(é) dL

14

{r,8), the stress field is given by
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(4.25)
_ 1 36
tyr ° M J T 39 B(&) 4L
c
) 3G
o] Erg
c

5, UNIFORM DISTRIBUTIONS OF SCREWS
Here we calculate the stress field for two different uniform line

distributions of screw dislocations:

(1) Serew Dislocation Along a Straight Line

Consider a line distribution of screw dislocations of constant

Burger's vector along a straight line segment | xﬂiﬁ ’ x2=x3=0. Green's

function is given by

(5.1) G([x-£) = - %; [Ln (o/e) + K (o/€) ]
where
(5.2) o= [ (x - E)Z + xzzl15

We can evaluate tys given by (4.24) immediately since

6, = 3G/dx = - 3C/3F

1

and we have
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(5.3) thg = ub [ G(le - gl) - 6(12+¢i) ]

Explicitly,

(5.4) tys = - %’:’ { n [%:;_i;;%:—z;]% * Kol:‘/("l"Z)Z”‘ZZ/€ }
. Ko':'/(x1+9')2+x22/€]

Along the line of screws, this gives
(5.5) pb %2 o s
) tyy(x),0) = - B { in (i )+ Kplixgmtise)- K(xgsile) |

Calculation of tl3 is complicated. However, it is easy v see that

Unlike the classical case, tzs(xl,O) has no singularity at the end

points X = *¢ of the screw line., In fact, we have

(5.7) t23(:1,0) z + %;[Qn(l/e) + Ko(Zi/e)]
for £%>> 1, we have the asymptotic value

(5.8) t23(:2,0) + = %% [Ln{L/e) + (ne/4‘~)15 exp(-22/¢)]




where the second term can also be neglected as compared to the first one

for large ¥ €.

(1i) Uniform Distribution of Serew Dislocations Along a Circle

Suppose that in the plane Xz = 0, there is a uniformly distributed
screw dislocationsalong a circle of radius R. In plane polar coordi-

nates, we have

(5.9) X; =T cos e, X, =T sin 6 ,
51 = R cos ¢ , 52 =R sin ¢ ,

1.

|x - £l = | r2 + R% - 2r R cos (¢-8) 1°

Greens' function is given by

(5.10) G (Ix - E]) = - 5 [en(lx - &l/e) + K (Ix - &]/e)]

To calculate the stress field t . and t,g Wwe must evaluate two integrals

27+ €
(5.11) 1, = J Qn{% [(r° + R% - 2 r R cos (¢-8)]" } do
6
21+ 6
(5.12) I = [ Ko {% (x + R* - 25 R cos (¢-0) ] } a0
5
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To evaluate (5.11), we write

(5.13) an {% (2 + R - 2 rR cos (¢-8)]" } = 2n( J%R—L)
. + &n (1-a cos? %)%

where

(5.14) a =4 R/(r+RZ , b-0=y

The second term in (5.13) can be integrated by writing x=coqy/2) and

consulting Ref, 9, p. 562, No. 38. Consequently

2m &n(r/c) r >R
(5.15) I, = {

2n tn(R/€) r <R

To evaluate 12 , we employ the integrals 6,684 on p., 741 of Ref. 9, and

note that
Ti . . .
Ko(z) = = ( Jo (iz) + i No (iz) ]

where JO and N0 are zero order Bessel functions, The result is

2n 1 (R/e) K (r/e) , r >R
(5.16) 1, = { ° °
2n lo(r/e) KO(R/E) . r <R

Consequently,




bl L 3

n in (r/e) + I (R/€) K_(r/€), TR

(5.17) I = J G(|x-g| d& = - { i
0 ¢n (R/eg) + Io(r/E) KO(R/E), <R

The stress field is given by

(5.18) tzr =¥ r o6 0,
b R &1 m/e) K, (x/E) >R
a1 _ €E'r o 1 ’
tze = ubR i R
ub € I](r/e) KO(R/E) R <R

In the special case when R-+0 and 2“Rb==b0 s, we obtain

UbO Y
(5.19) te = e [ 1 - K(/e) ]

which is identical to our previous result for a single screw dislocation

having Burger's fector b,.
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6. STRESS DISTRIBUTIONS

Here, I present some numerical results on the stress distributions
for the cases discussed in Section 5 and establishes a fracture criteria

based on the maximum shear stress.

(i) Single Screw: The shear stress given by (5.19) may be expressed

in non-dimensional form:

(6.1) To(o) = (re/ub) tg = oTM[1 0K ()]
where
(6.2) p = r/e

The stress field given by (6.1) is displayed graphically in Fig. 1. It has
no singularity at p=0. In fact, Te(o) vanishes at o =0 1in contradic-
tion to the classical elasticity solution which gives infinite stress at p=0.

The maximum stress occurs at p=1.1 and is given by

(6.3) tomax 2me

1f we write h=¢/0,3993, this agrees with Frenkelfs estimate of the theore-
tical strength of single crystals, based on atomic considerations (cf.,

Kelly [10}, p. 12). In fact, if we use ¢ = €,a=0.39 a, which is obtained
on the basis of matching of the dispersion curve predicted by non-local elas-
ticity and the Born-Karman lattice models, we find for the single aluminum

crystal




(6.4) tS/u = 0.12 {A1: [111]<170>}

This is very close to the theoretical strength ty/u = 0.11 based on

atomic models.

(ii) Screw Dislocations Along a Straight Line Segment: Even single

c¢rystals contain many dislocations, For a uniform distribution of screws
along a line segment ]xll <%, x,=x5=0 , the shear stress given by

(5.5) may be written in non-dimensional form

lx*lg ) .
(0.5) T, = ty3/tg = *&n + Ky (v[x+1]) - Ko(y;x-l )
- Ix-1]
where
(6.6) td = yb/2— = ubON/?#i . X = xl/i , Y = L/¢€

Here b0 is the atomic Burger's vector and N 1is the total number of
dislocations over a distance 2.

The distribution of the shear stress (6.5) as a function of x is
shown in Fig. 2 for various values of Yy . Behavior of Té is governed

basically by the first term in (6.5) except near x=1. At x=]1, we

have

(6'7) t-)l(l) = il

The value of Tz(l) is very close to the maximum stress for > 3
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(cf. Table 1). For a single atomic dislocation according to (6.3), we

have the theoretical strength

ub

(6.8) t}’ = 0,3993 S7e

Combining (6.7) and (6.8), we obtain

d,.c _ N iny
(6.9) t/ty T 503953 Ty
where we set t,s(l) =t3 = the yield stress for the distributed dis-

locations. This gives the shear stress reduction due to the presence
of 2N dislocations distributed uniformly along a straight line segment

. . d C . . . .
of length 25 . Since ty A VP the maximum number of dislocations 1s

given by
(6.10) N = 0.3993 —L
‘ max XN Y
For v =43.02 X104 , this gives Nmax= 1514, which may be conservative

since the distribution is not generally uniform but in an inverse pile-up

configuration11

(ii1) Uniform Distribution of Screws Along a Circle: In this case,

the stress fields given by (5.18) may be expressed in non-dimensional form

%- € I,() K (<), 0>
(L.11) T = t_,/ub =

K KO(K] II(KC) , 2< 1




where

(6.12) p=r1/R, K = R/e

T as a function of p , for various values of x , 1is displayed in
Fig. 3. For value of K > 50, the maxima of T occurs near p=1.
The locations and values of Tmat are given in Table 2.

If b0 is the atomic Burger's vector, then

(6.13) 2Tt Rb = NbDb

where N 1is the number of dislocations on the dislocation circle with

radius R. Using (6.8), (6.12) and (06.13), we obtain

c  _ N
(6.14) te/ty * Tismes e T
According to Fig. 3, 0.324 < Tmax <1l. Consequently,
. " d, . c
(6.15) N/1.2k < ty/ty < N/0.4x

For perfect crystals with £=0.39a , this gives approximately
d, c
(6.16) 0.3 Na/R < tv/ty < Na/R

indicating reduction of the yield stress with the presence of large

number dislocations uniformly distributed along a circle of radius R.
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Table 1 : Maximum Shear Stress and its Location

(Line Segment)

Yy = 1 1.5 2 3 S
x = 1.446 1.197 1.103 1.039 1.000

T = (0.7478 1.0501 1.3008 1.6851 2.3026

2max
Table 2 : Maximum Shear Stress and its Location
(Circle)

K = 1 2 3 5 10
p = 1.8 1.5 1.4 1.3 1.2

T = 0.3243 0.4836 0.5688 0.6630 0.7688

max

-

10

1.000

2.9957

50

1.1

0.9058
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